Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114100, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607921

RESUMEN

Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.


Asunto(s)
Región CA1 Hipocampal , Dendritas , Células Piramidales , Humanos , Células Piramidales/fisiología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/fisiología , Animales , Masculino , Ratones , Dendritas/fisiología , Femenino , Persona de Mediana Edad , Anciano , Ritmo Teta/fisiología , Adulto
2.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808657

RESUMEN

The human brain undergoes protracted post-natal maturation, guided by dynamic changes in gene expression. To date, studies exploring these processes have used bulk tissue analyses, which mask cell type-specific gene expression dynamics. Here, using single nucleus (sn)RNA-Sseq on temporal lobe tissue, including samples of African ancestry, we build a joint paediatric and adult atlas of 54 cell subtypes, which we verify with spatial transcriptomics. We explore the differences in cell states between paediatric and adult cell types, revealing the genes and pathways that change during brain maturation. Our results highlight excitatory neuron subtypes, including the LTK and FREM subtypes, that show elevated expression of genes associated with cognition and synaptic plasticity in paediatric tissue. The new resources we present here improve our understanding of the brain during a critical period of its development and contribute to global efforts to build an inclusive cell map of the brain.

3.
Cereb Cortex ; 33(6): 2857-2878, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35802476

RESUMEN

Synaptic transmission constitutes the primary mode of communication between neurons. It is extensively studied in rodent but not human neocortex. We characterized synaptic transmission between pyramidal neurons in layers 2 and 3 using neurosurgically resected human middle temporal gyrus (MTG, Brodmann area 21), which is part of the distributed language circuitry. We find that local connectivity is comparable with mouse layer 2/3 connections in the anatomical homologue (temporal association area), but synaptic connections in human are 3-fold stronger and more reliable (0% vs 25% failure rates, respectively). We developed a theoretical approach to quantify properties of spinous synapses showing that synaptic conductance and voltage change in human dendritic spines are 3-4-folds larger compared with mouse, leading to significant NMDA receptor activation in human unitary connections. This model prediction was validated experimentally by showing that NMDA receptor activation increases the amplitude and prolongs decay of unitary excitatory postsynaptic potentials in human but not in mouse connections. Since NMDA-dependent recurrent excitation facilitates persistent activity (supporting working memory), our data uncovers cortical microcircuit properties in human that may contribute to language processing in MTG.


Asunto(s)
Neocórtex , Receptores de N-Metil-D-Aspartato , Ratas , Adulto , Animales , Humanos , Ratones , Receptores de N-Metil-D-Aspartato/fisiología , Ratas Wistar , Células Piramidales/fisiología , Transmisión Sináptica/fisiología , Sinapsis/fisiología
4.
Cereb Cortex ; 32(11): 2424-2436, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34564728

RESUMEN

Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography (MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses. Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater network centrality correlated with more integrative properties at the cellular level across patients. We conclude that individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Magnetoencefalografía , Lóbulo Temporal
5.
Cereb Cortex ; 30(7): 4246-4256, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32191258

RESUMEN

The molecular processes underlying the aging-related decline in cognitive performance and memory observed in humans are poorly understood. Studies in rodents have shown a decrease in N-methyl-D-aspartate receptors (NMDARs) that contain the GluN2B subunit in aging synapses, and this decrease is correlated with impaired memory functions. However, the age-dependent contribution of GluN2B-containing receptors to synaptic transmission in human cortical synapses has not been previously studied. We investigated the synaptic contribution of GluN2A and GluN2B-containing NMDARs in adult human neurons using fresh nonpathological temporal cortical tissue resected during neurosurgical procedures. The tissue we obtained fulfilled quality criteria by the absence of inflammation markers and proteomic degradation. We show an age-dependent decline in the NMDA/AMPA receptor ratio in adult human temporal cortical synapses. We demonstrate that GluN2B-containing NMDA receptors contribute to synaptic responses in the adult human brain with a reduced contribution in older individuals. With previous evidence demonstrating the critical role of synaptic GluN2B in regulating synaptic strength and memory storage in mice, this progressive reduction of GluN2B in the human brain during aging may underlie a molecular mechanism in the age-related decline in cognitive abilities and memory observed in humans.


Asunto(s)
Envejecimiento/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Lóbulo Temporal/metabolismo , Adulto , Anciano , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptores AMPA/metabolismo , Lóbulo Temporal/citología , Adulto Joven
6.
Front Cell Neurosci ; 13: 315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354435

RESUMEN

Group I metabotropic glutamate receptors (mGluRs) mediate a range of signaling and plasticity processes in the brain and are of growing importance as potential therapeutic targets in clinical trials for neuropsychiatric and neurodevelopmental disorders (NDDs). Fundamental knowledge regarding the functional effects of mGluRs upon pyramidal neurons and interneurons is derived largely from rodent brain, and their effects upon human neurons are predominantly untested. We therefore addressed how group I mGluRs affect microcircuits in human neocortex. We show that activation of group I mGluRs elicits action potential firing in Martinotti cells, which leads to increased synaptic inhibition onto neighboring neurons. Some other interneurons, including fast-spiking interneurons, are depolarized but do not fire action potentials in response to group I mGluR activation. Furthermore, we confirm the existence of group I mGluR-mediated depression of excitatory synapses in human pyramidal neurons. We propose that the strong increase in inhibition and depression of excitatory synapses onto layer 2/3 pyramidal neurons upon group I mGluR activation likely results in a shift in the balance between excitation and inhibition in the human cortical network.

7.
Curr Opin Neurobiol ; 54: 186-193, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30017789

RESUMEN

Synaptic plasticity is the cellular basis of learning and memory, but to what extent this holds for the adult human brain is not known. To study synaptic plasticity in human neuronal circuits poses a huge challenge, since live human neurons and synapses are not readily accessible. Despite this, various lines of research have provided insights in properties of adult human synapses and their plasticity both in vitro and in vivo, with some unexpected surprises. We first discuss the experimental approaches to study activity-dependent plasticity of adult human synapses, and then highlight rules and mechanisms of Hebbian spike timing-dependent plasticity (STDP) found in these synapses. Finally, we conclude with thoughts on how these synaptic principles can underlie human learning and memory.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiología , Aprendizaje , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Humanos
8.
Elife ; 72018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30561325

RESUMEN

It is generally assumed that human intelligence relies on efficient processing by neurons in our brain. Although grey matter thickness and activity of temporal and frontal cortical areas correlate with IQ scores, no direct evidence exists that links structural and physiological properties of neurons to human intelligence. Here, we find that high IQ scores and large temporal cortical thickness associate with larger, more complex dendrites of human pyramidal neurons. We show in silico that larger dendritic trees enable pyramidal neurons to track activity of synaptic inputs with higher temporal precision, due to fast action potential kinetics. Indeed, we find that human pyramidal neurons of individuals with higher IQ scores sustain fast action potential kinetics during repeated firing. These findings provide the first evidence that human intelligence is associated with neuronal complexity, action potential kinetics and efficient information transfer from inputs to output within cortical neurons.


Asunto(s)
Encéfalo/fisiología , Inteligencia , Células Piramidales/fisiología , Potenciales de Acción , Adolescente , Adulto , Anciano , Simulación por Computador , Femenino , Humanos , Pruebas de Inteligencia , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Adulto Joven
9.
Front Cell Neurosci ; 12: 181, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008663

RESUMEN

We present detailed models of pyramidal cells from human neocortex, including models on their excitatory synapses, dendritic spines, dendritic NMDA- and somatic/axonal Na+ spikes that provided new insights into signal processing and computational capabilities of these principal cells. Six human layer 2 and layer 3 pyramidal cells (HL2/L3 PCs) were modeled, integrating detailed anatomical and physiological data from both fresh and postmortem tissues from human temporal cortex. The models predicted particularly large AMPA- and NMDA-conductances per synaptic contact (0.88 and 1.31 nS, respectively) and a steep dependence of the NMDA-conductance on voltage. These estimates were based on intracellular recordings from synaptically-connected HL2/L3 pairs, combined with extra-cellular current injections and use of synaptic blockers, and the assumption of five contacts per synaptic connection. A large dataset of high-resolution reconstructed HL2/L3 dendritic spines provided estimates for the EPSPs at the spine head (12.7 ± 4.6 mV), spine base (9.7 ± 5.0 mV), and soma (0.3 ± 0.1 mV), and for the spine neck resistance (50-80 MΩ). Matching the shape and firing pattern of experimental somatic Na+-spikes provided estimates for the density of the somatic/axonal excitable membrane ion channels, predicting that 134 ± 28 simultaneously activated HL2/L3-HL2/L3 synapses are required for generating (with 50% probability) a somatic Na+ spike. Dendritic NMDA spikes were triggered in the model when 20 ± 10 excitatory spinous synapses were simultaneously activated on individual dendritic branches. The particularly large number of basal dendrites in HL2/L3 PCs and the distinctive cable elongation of their terminals imply that ~25 NMDA-spikes could be generated independently and simultaneously in these cells, as compared to ~14 in L2/3 PCs from the rat somatosensory cortex. These multi-sites non-linear signals, together with the large (~30,000) excitatory synapses/cell, equip human L2/L3 PCs with enhanced computational capabilities. Our study provides the most comprehensive model of any human neuron to-date demonstrating the biophysical and computational distinctiveness of human cortical neurons.

10.
Cell Rep ; 23(4): 951-958, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29694902

RESUMEN

Inhibitory interneurons govern virtually all computations in neocortical circuits and are in turn controlled by neuromodulation. While a detailed understanding of the distinct marker expression, physiology, and neuromodulator responses of different interneuron types exists for rodents and recent studies have highlighted the role of specific interneurons in converting rapid neuromodulatory signals into altered sensory processing during locomotion, attention, and associative learning, it remains little understood whether similar mechanisms exist in human neocortex. Here, we use whole-cell recordings combined with agonist application, transgenic mouse lines, in situ hybridization, and unbiased clustering to directly determine these features in human layer 1 interneurons (L1-INs). Our results indicate pronounced nicotinic recruitment of all L1-INs, whereas only a small subset co-expresses the ionotropic HTR3 receptor. In addition to human specializations, we observe two comparable physiologically and genetically distinct L1-IN types in both species, together indicating conserved rapid neuromodulation of human neocortical circuits through layer 1.


Asunto(s)
Interneuronas/metabolismo , Neocórtex/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Transmisión Sináptica/fisiología , Adulto , Animales , Femenino , Humanos , Interneuronas/citología , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neocórtex/citología , Receptores de Serotonina 5-HT3/genética
11.
Front Neural Circuits ; 11: 100, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276477

RESUMEN

Acetylcholine (ACh) signaling shapes neuronal circuit development and underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. During behavior, activation of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) by ACh alters the activation state of neurons, and neuronal circuits most likely process information differently with elevated levels of ACh. In several brain regions, ACh has been shown to alter synaptic strength as well. By changing the rules for synaptic plasticity, ACh can have prolonged effects on and rearrange connectivity between neurons that outlasts its presence. From recent discoveries in the mouse, rat, monkey and human brain, a picture emerges in which the basal forebrain (BF) cholinergic system targets the neocortex with much more spatial and temporal detail than previously considered. Fast cholinergic synapses acting on a millisecond time scale are abundant in the mammalian cerebral cortex, and provide BF cholinergic neurons with the possibility to rapidly alter information flow in cortical microcircuits. Finally, recent studies have outlined novel mechanisms of how cholinergic projections from the BF affect synaptic strength in several brain areas of the rodent brain, with behavioral consequences. This review highlights these exciting developments and discusses how these findings translate to human brain circuitries.


Asunto(s)
Acetilcolina/metabolismo , Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Animales , Haplorrinos , Humanos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Receptores Colinérgicos/metabolismo , Roedores
12.
Cereb Cortex ; 27(11): 5398-5414, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968789

RESUMEN

There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 µm2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 µm). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 MΩ, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth-independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as "slim-tufted" and "profuse-tufted" HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs.


Asunto(s)
Células Piramidales/citología , Células Piramidales/fisiología , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología , Adulto , Animales , Neoplasias Encefálicas/cirugía , Tamaño de la Célula , Epilepsia/cirugía , Humanos , Imagenología Tridimensional/métodos , Ratones , Persona de Mediana Edad , Modelos Estadísticos , Técnicas de Placa-Clamp , Análisis de Componente Principal , Procesamiento de Señales Asistido por Computador , Especificidad de la Especie , Lóbulo Temporal/cirugía , Técnicas de Cultivo de Tejidos , Adulto Joven
13.
Elife ; 52016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27710767

RESUMEN

The advanced cognitive capabilities of the human brain are often attributed to our recently evolved neocortex. However, it is not known whether the basic building blocks of the human neocortex, the pyramidal neurons, possess unique biophysical properties that might impact on cortical computations. Here we show that layer 2/3 pyramidal neurons from human temporal cortex (HL2/3 PCs) have a specific membrane capacitance (Cm) of ~0.5 µF/cm2, half of the commonly accepted 'universal' value (~1 µF/cm2) for biological membranes. This finding was predicted by fitting in vitro voltage transients to theoretical transients then validated by direct measurement of Cm in nucleated patch experiments. Models of 3D reconstructed HL2/3 PCs demonstrated that such low Cm value significantly enhances both synaptic charge-transfer from dendrites to soma and spike propagation along the axon. This is the first demonstration that human cortical neurons have distinctive membrane properties, suggesting important implications for signal processing in human neocortex.


Asunto(s)
Potenciales de Acción/fisiología , Membrana Celular/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Modelos Neurológicos , Neocórtex/fisiología , Células Piramidales/fisiología , Adulto , Anciano de 80 o más Años , Animales , Axones/fisiología , Axones/ultraestructura , Membrana Celular/ultraestructura , Dendritas/fisiología , Dendritas/ultraestructura , Femenino , Humanos , Masculino , Ratones , Microtomía , Persona de Mediana Edad , Neocórtex/citología , Técnicas de Placa-Clamp , Células Piramidales/ultraestructura , Lóbulo Temporal/citología , Lóbulo Temporal/fisiología
14.
Nat Commun ; 7: 12826, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604129

RESUMEN

Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans.


Asunto(s)
Acetilcolina/metabolismo , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Nicotina/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Receptores Nicotínicos/fisiología , Sinapsis
15.
Cereb Cortex ; 25(12): 4839-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26318661

RESUMEN

The size and shape of dendrites and axons are strong determinants of neuronal information processing. Our knowledge on neuronal structure and function is primarily based on brains of laboratory animals. Whether it translates to human is not known since quantitative data on "full" human neuronal morphologies are lacking. Here, we obtained human brain tissue during resection surgery and reconstructed basal and apical dendrites and axons of individual neurons across all cortical layers in temporal cortex (Brodmann area 21). Importantly, morphologies did not correlate to etiology, disease severity, or disease duration. Next, we show that human L(ayer) 2 and L3 pyramidal neurons have 3-fold larger dendritic length and increased branch complexity with longer segments compared with temporal cortex neurons from macaque and mouse. Unsupervised cluster analysis classified 88% of human L2 and L3 neurons into human-specific clusters distinct from mouse and macaque neurons. Computational modeling of passive electrical properties to assess the functional impact of large dendrites indicates stronger signal attenuation of electrical inputs compared with mouse. We thus provide a quantitative analysis of "full" human neuron morphologies and present direct evidence that human neurons are not "scaled-up" versions of rodent or macaque neurons, but have unique structural and functional properties.


Asunto(s)
Axones , Dendritas , Neocórtex/citología , Células Piramidales/citología , Lóbulo Temporal/citología , Adulto , Anciano , Animales , Análisis por Conglomerados , Epilepsia/patología , Femenino , Humanos , Macaca fascicularis/anatomía & histología , Macaca mulatta/anatomía & histología , Masculino , Ratones/anatomía & histología , Ratones Endogámicos C57BL/anatomía & histología , Persona de Mediana Edad , Especificidad de la Especie , Adulto Joven
16.
PLoS Biol ; 12(11): e1002007, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25422947

RESUMEN

Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.


Asunto(s)
Neocórtex/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Adolescente , Adulto , Animales , Humanos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Adulto Joven
17.
J Neurosci ; 33(43): 17197-208, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24155324

RESUMEN

The neocortex in our brain stores long-term memories by changing the strength of connections between neurons. To date, the rules and mechanisms that govern activity-induced synaptic changes at human cortical synapses are poorly understood and have not been studied directly at a cellular level. Here, we made whole-cell recordings of human pyramidal neurons in slices of brain tissue resected during neurosurgery to investigate spike timing-dependent synaptic plasticity in the adult human neocortex. We find that human cortical synapses can undergo bidirectional modifications in strength throughout adulthood. Both long-term potentiation and long-term depression of synapses was dependent on postsynaptic NMDA receptors. Interestingly, we find that human cortical synapses can associate presynaptic and postsynaptic events in a wide temporal window, and that rules for synaptic plasticity in human neocortex are reversed compared with what is generally found in the rodent brain. We show this is caused by dendritic L-type voltage-gated Ca2+ channels that are prominently activated during action potential firing. Activation of these channels determines whether human synapses strengthen or weaken. These findings provide a synaptic basis for the timing rules observed in human sensory and motor plasticity in vivo, and offer insights into the physiological role of L-type voltage-gated Ca2+ channels in the human brain.


Asunto(s)
Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Neocórtex/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Potenciales de Acción , Adolescente , Adulto , Canales de Calcio Tipo L/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neocórtex/citología , Neocórtex/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología
18.
J Neurosci ; 33(11): 4843-53, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23486955

RESUMEN

Adolescence is a period in which the developing prefrontal cortex (PFC) is sensitive to maladaptive changes when exposed to nicotine. Nicotine affects PFC function and repeated exposure to nicotine during adolescence impairs attention performance and impulse control during adulthood. Nicotine concentrations experienced by smokers are known to desensitize nicotinic acetylcholine receptors (nAChRs), but the impact thereof on PFC circuits is poorly understood. Here, we investigated how smoking concentrations of nicotine (100-300 nm) interfere with cholinergic signaling in the mouse PFC. nAChR desensitization depends on subunit composition. Since nAChR subunits are differentially expressed across layers of the PFC neuronal network, we hypothesized that cholinergic signaling through nAChRs across layers would suffer differentially from exposure to nicotine. Throughout the PFC, nicotine strongly desensitized responses to ACh in neurons expressing ß2* nAChRs, whereas ACh responses mediated by α7 nAChRs were not hampered. The amount of desensitization of ß2* nAChR currents depended on neuron type and cortical layer. ß2*-mediated responses of interneurons in LII-III and LVI completely desensitized, while cholinergic responses in LV interneurons and LVI pyramidal cells showed less desensitization. This discrepancy depended on α5 subunit expression. Two-photon imaging of neuronal population activity showed that prolonged exposure to nicotine limited cholinergic signaling through ß2* nAChRs to deep PFC layers where α5 subunits were expressed. Together, our results demonstrate a layer-dependent decrease in cholinergic activation of the PFC through nAChRs by nicotine. These mechanisms may be one of the first steps leading up to the pathophysiological changes associated with nicotine exposure during adolescence.


Asunto(s)
Acetilcolina/metabolismo , Red Nerviosa/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Calcio/metabolismo , Inhibidores de la Colinesterasa/farmacología , Dihidro-beta-Eritroidina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Galantamina/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Quinoxalinas/farmacología , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
19.
Neural Plast ; 2011: 870763, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21941664

RESUMEN

Throughout life, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. In line with predictions made by Hebb, synapse strength can be modified depending on the millisecond timing of action potential firing (STDP). The sign of synaptic plasticity depends on the spike order of presynaptic and postsynaptic neurons. Ionotropic neurotransmitter receptors, such as NMDA receptors and nicotinic acetylcholine receptors, are intimately involved in setting the rules for synaptic strengthening and weakening. In addition, timing rules for STDP within synapses are not fixed. They can be altered by activation of ionotropic receptors located at, or close to, synapses. Here, we will highlight studies that uncovered how network actions control and modulate timing rules for STDP by activating presynaptic ionotropic receptors. Furthermore, we will discuss how interaction between different types of ionotropic receptors may create "timing" windows during which particular timing rules lead to synaptic changes.


Asunto(s)
Potenciales de Acción/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Receptores Ionotrópicos de Glutamato/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-21423498

RESUMEN

Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic action potential firing. Recent findings on laboratory animals have shown that neurons can show a variety of temporal windows for spike-timing-dependent plasticity (STDP). It is unknown what synaptic learning rules exist in human synapses and whether similar temporal windows for STDP at synapses hold true for the human brain. Here, we directly tested in human slices cut from hippocampal tissue removed for surgical treatment of deeper brain structures in drug-resistant epilepsy patients, whether adult human synapses can change strength in response to millisecond timing of pre- and postsynaptic firing. We find that adult human hippocampal synapses can alter synapse strength in response to timed pre- and postsynaptic activity. In contrast to rodent hippocampal synapses, the sign of plasticity does not sharply switch around 0-ms timing. Instead, both positive timing intervals, in which presynaptic firing preceded the postsynaptic action potential, and negative timing intervals, in which postsynaptic firing preceded presynaptic activity down to -80 ms, increase synapse strength (tLTP). Negative timing intervals between -80 to -130 ms induce a lasting reduction of synapse strength (tLTD). Thus, similar to rodent synapses, adult human synapses can show spike-timing-dependent changes in strength. The timing rules of STDP in human hippocampus, however, seem to differ from rodent hippocampus, and suggest a less strict interpretation of Hebb's predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...